
Unpicking PLAID
A Cryptographic Analysis of an ISO-standards-
track Authentication Protocol
Summer School on Real-World Crypto 2015

Jean Paul Degabriele
Kenneth G. Paterson

Information Security Group,
Royal Holloway, University of London

Victoria Fehr
Marc Fischlin

Tommaso Gagliardoni
Felix Günther

Giorgia Azzurra Marson
Arno Mittelbach

Cryptoplexity, TU Darmstadt

June 4th, 2015 | Jean Paul Degabriele | 1

Outline of this Talk

Introduction

Description of PLAID

Keyset Fingerprinting

Tracing Cards

General Security Concerns

June 4th, 2015 | Jean Paul Degabriele | 2

Protocol for Lightweight Authentication of IDentity

Card (ICC) Terminal (IFD)

Who are you?I’m Smarty!

Okay.
You may enter.

I contactless authentication
protocol

I developed by Centrelink
I AS 5185-2010
I submitted to ISO via fast

track as ISO/IEC 25185-1

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

June 4th, 2015 | Jean Paul Degabriele | 3

Protocol for Lightweight Authentication of IDentity

Card (ICC) Terminal (IFD)

Who are you?I’m Smarty!

Okay.
You may enter.

I contactless authentication
protocol

I developed by Centrelink
I AS 5185-2010
I submitted to ISO via fast

track as ISO/IEC 25185-1

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

June 4th, 2015 | Jean Paul Degabriele | 3

Protocol for Lightweight Authentication of IDentity

Card (ICC) Terminal (IFD)

Who are you?

I’m Smarty!

Okay.
You may enter.

I contactless authentication
protocol

I developed by Centrelink
I AS 5185-2010
I submitted to ISO via fast

track as ISO/IEC 25185-1

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

June 4th, 2015 | Jean Paul Degabriele | 3

Protocol for Lightweight Authentication of IDentity

Card (ICC) Terminal (IFD)

Who are you?

I’m Smarty!

Okay.
You may enter.

I contactless authentication
protocol

I developed by Centrelink
I AS 5185-2010
I submitted to ISO via fast

track as ISO/IEC 25185-1

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

June 4th, 2015 | Jean Paul Degabriele | 3

Protocol for Lightweight Authentication of IDentity

Card (ICC) Terminal (IFD)

Who are you?I’m Smarty!

Okay.
You may enter.

I contactless authentication
protocol

I developed by Centrelink
I AS 5185-2010
I submitted to ISO via fast

track as ISO/IEC 25185-1

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

June 4th, 2015 | Jean Paul Degabriele | 3

Protocol for Lightweight Authentication of IDentity

Card (ICC) Terminal (IFD)

Who are you?I’m Smarty!

Okay.
You may enter.

I contactless authentication
protocol

I developed by Centrelink

I AS 5185-2010
I submitted to ISO via fast

track as ISO/IEC 25185-1

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

June 4th, 2015 | Jean Paul Degabriele | 3

Protocol for Lightweight Authentication of IDentity

Card (ICC) Terminal (IFD)

Who are you?I’m Smarty!

Okay.
You may enter.

I contactless authentication
protocol

I developed by Centrelink
I AS 5185-2010

I submitted to ISO via fast
track as ISO/IEC 25185-1

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

June 4th, 2015 | Jean Paul Degabriele | 3

Protocol for Lightweight Authentication of IDentity

Card (ICC) Terminal (IFD)

Who are you?I’m Smarty!

Okay.
You may enter.

I contactless authentication
protocol

I developed by Centrelink
I AS 5185-2010
I submitted to ISO via fast

track as ISO/IEC 25185-1

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

June 4th, 2015 | Jean Paul Degabriele | 3

Protocol for Lightweight Authentication of IDentity

Card (ICC) Terminal (IFD)

Who are you?I’m Smarty!

Okay.
You may enter.

I contactless authentication
protocol

I developed by Centrelink
I AS 5185-2010
I submitted to ISO via fast

track as ISO/IEC 25185-1

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

June 4th, 2015 | Jean Paul Degabriele | 3

The PLAID Protocol

I Building blocks: 2048-bit RSA with PKCS#1 v1.5 padding, AES-128 in CBC
mode and SHA-256.

I A keyset is a triple comprising of a 2-byte Keyset ID, an RSA key (encryption or
decryption) and an AES key.

I A keyset corresponds to a capability (a token providing access to some
object(s)).

I Keysets are preloaded in cards and terminals during initialisation.

June 4th, 2015 | Jean Paul Degabriele | 4

The PLAID Protocol

I For each keyset there corresponds an AES master key Ki which is given to the
terminals (IFDs).

I For a specific keyset each card will be assigned a different AES key and a
unique card identifier called Diversification Data (DivData).

I A terminal can derive a card’s AES key K DD
i from the master key and DivData,

K DD
i = AESKi (DivData).

I Each card is additionally preloaded with an extra set of Shillkeys, the use of
which will be explained later.

June 4th, 2015 | Jean Paul Degabriele | 5

The PLAID Protocol

I For each keyset there corresponds an AES master key Ki which is given to the
terminals (IFDs).

I For a specific keyset each card will be assigned a different AES key and a
unique card identifier called Diversification Data (DivData).

I A terminal can derive a card’s AES key K DD
i from the master key and DivData,

K DD
i = AESKi (DivData).

I Each card is additionally preloaded with an extra set of Shillkeys, the use of
which will be explained later.

June 4th, 2015 | Jean Paul Degabriele | 5

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)

(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)

(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)

(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)

(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?

!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)

(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?

!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)

(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)

(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)

(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)

(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The PLAID Protocol

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34
...

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

...

(KeySetIDs)

(34, 7, ...)

RSApk7 (7, DivData, RND1, RND1)

?!

K DD
7 = AESK7 (DivData)

ksession = SHA(RND1||RND2)

AESK DD
7

(AuthReq, RND2, payload, ksession)

ksession = SHA(RND1||RND2)

AESksession (AuthResp, payload, DivData)

Channel secured with ksession (optional)

June 4th, 2015 | Jean Paul Degabriele | 6

The Security of PLAID

“PLAID [...] is cryptographically stronger, faster and more private [...]”
Centrelink PLAID Specification v8.0, 2009

“[...] strong authentication [...] in a fast, highly secure and private
fashion without the exposure of [...] identifying information or any other
information which is useful to an attacker.”

ISO/IEC 25185-1.2, 2014

But no formal security analysis is provided!

June 4th, 2015 | Jean Paul Degabriele | 7

The Security of PLAID

“PLAID [...] is cryptographically stronger, faster and more private [...]”
Centrelink PLAID Specification v8.0, 2009

“[...] strong authentication [...] in a fast, highly secure and private
fashion without the exposure of [...] identifying information or any other
information which is useful to an attacker.”

ISO/IEC 25185-1.2, 2014

But no formal security analysis is provided!

June 4th, 2015 | Jean Paul Degabriele | 7

The Security of PLAID

“PLAID [...] is cryptographically stronger, faster and more private [...]”
Centrelink PLAID Specification v8.0, 2009

“[...] strong authentication [...] in a fast, highly secure and private
fashion without the exposure of [...] identifying information or any other
information which is useful to an attacker.”

ISO/IEC 25185-1.2, 2014

But no formal security analysis is provided!

June 4th, 2015 | Jean Paul Degabriele | 7

Notions of Privacy

Anonymity

I Protocol does not reveal personal
identification data of cardholders

Untraceability

I It should not be possible to trace the
card’s activity.

Images by: Giorgia Azzurra Marson

June 4th, 2015 | Jean Paul Degabriele | 8

Notions of Privacy

Anonymity

I Protocol does not reveal personal
identification data of cardholders

Untraceability

I It should not be possible to trace the
card’s activity.

Images by: Giorgia Azzurra MarsonJune 4th, 2015 | Jean Paul Degabriele | 8

Notions of Privacy

Anonymity

I Protocol does not reveal personal
identification data of cardholders

Untraceability

I It should not be possible to trace the
card’s activity.

Images by: Giorgia Azzurra MarsonJune 4th, 2015 | Jean Paul Degabriele | 8

Notions of Privacy

Anonymity

I Protocol does not reveal personal
identification data of cardholders

Untraceability

I It should not be possible to trace the
card’s activity.

Images by: Giorgia Azzurra MarsonJune 4th, 2015 | Jean Paul Degabriele | 8

Notions of Privacy

Anonymity

I Protocol does not reveal personal
identification data of cardholders

Untraceability

I It should not be possible to trace the
card’s activity.

Images by: Giorgia Azzurra MarsonJune 4th, 2015 | Jean Paul Degabriele | 8

When Access is Denied...

IFDICC

index RSA AES

5 sk5 K5

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

I What if none of the presented keysets are supported by the card?

I The Card will encrypt a randomly generated string using its ShillKey.

I At the IFD side, if no plaintext ending in RND1||RND1 is found, authentication
fails (abort).

June 4th, 2015 | Jean Paul Degabriele | 9

When Access is Denied...

IFDICC

index RSA AES

5 sk5 K5

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (34, 5)

I What if none of the presented keysets are supported by the card?

I The Card will encrypt a randomly generated string using its ShillKey.

I At the IFD side, if no plaintext ending in RND1||RND1 is found, authentication
fails (abort).

June 4th, 2015 | Jean Paul Degabriele | 9

When Access is Denied...

IFDICC

index RSA AES

5 sk5 K5

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

?
KeySetID = (34, 5)

I What if none of the presented keysets are supported by the card?

I The Card will encrypt a randomly generated string using its ShillKey.

I At the IFD side, if no plaintext ending in RND1||RND1 is found, authentication
fails (abort).

June 4th, 2015 | Jean Paul Degabriele | 9

When Access is Denied...

IFDICC

index RSA AES

5 sk5 K5

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (34, 5)

I What if none of the presented keysets are supported by the card?

I The Card will encrypt a randomly generated string using its ShillKey.

I At the IFD side, if no plaintext ending in RND1||RND1 is found, authentication
fails (abort).

June 4th, 2015 | Jean Paul Degabriele | 9

When Access is Denied...

IFDICC

index RSA AES

5 sk5 K5

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (34, 5)

RSApk∗ ($)

I What if none of the presented keysets are supported by the card?

I The Card will encrypt a randomly generated string using its ShillKey.

I At the IFD side, if no plaintext ending in RND1||RND1 is found, authentication
fails (abort).

June 4th, 2015 | Jean Paul Degabriele | 9

When Access is Denied...

IFDICC

index RSA AES

5 sk5 K5

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (34, 5)

RSApk∗ ($)

I What if none of the presented keysets are supported by the card?

I The Card will encrypt a randomly generated string using its ShillKey.

I At the IFD side, if no plaintext ending in RND1||RND1 is found, authentication
fails (abort).

June 4th, 2015 | Jean Paul Degabriele | 9

The PLAID Design and Anonymity

I Recall that in PLAID the RSA encryption keys are kept private.

I The terminal’s (inefficient) strategy to sequentially attempt decryption under all
of its keys appears to be intended to hide the card’s set of keysets, since it
could easily be avoided by including the Keyset ID in the clear.

I Similarly the Shill key helps to prevent leaking the supported keysets to a
probing device.

I The above design factors indicate that PLAID aims to hide a card’s set of
keysets, i.e. its capabilities.

June 4th, 2015 | Jean Paul Degabriele | 10

The PLAID Design and Anonymity

I Recall that in PLAID the RSA encryption keys are kept private.

I The terminal’s (inefficient) strategy to sequentially attempt decryption under all
of its keys appears to be intended to hide the card’s set of keysets, since it
could easily be avoided by including the Keyset ID in the clear.

I Similarly the Shill key helps to prevent leaking the supported keysets to a
probing device.

I The above design factors indicate that PLAID aims to hide a card’s set of
keysets, i.e. its capabilities.

June 4th, 2015 | Jean Paul Degabriele | 10

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (34)

RSA(i , DivData, RND1, RND1)

messages are not authenticated!

Attack

I .
I

I

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (34, 7)

RSApki (i , DivData, RND1, RND1)

AESK DD
i

(AuthReq, RND2, payload, ksession)

AESksession (AuthResp, payload, DivData)

messages are not authenticated!

Attack

I .
I

I

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (34, 7)

RSApk7 (7, DivData, RND1, RND1)

messages are not authenticated!

Attack

I .
I

I

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (34, 7)

RSApk7 (7, DivData, RND1, RND1)
messages are not authenticated!

Attack

I .
I

I

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

?
KeySetID = (34)

messages are not authenticated!

Attack Phase 1
I Pick one Keyset ID in the first message and remove all others.

I

I

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (34)

RSApk∗ ($)

messages are not authenticated!

Attack Phase 1
I Pick one Keyset ID in the first message and remove all others.
I Card uses either the listed key or the ShillKey

I

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

?
KeySetID = (34)

RSApk∗ ($)

messages are not authenticated!

Attack Phase 1
I Pick one Keyset ID in the first message and remove all others.
I Card uses either the listed key or the ShillKey⇒ check whether the terminal

responds with a third message.

I

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

?
KeySetID = (34)

RSApk∗ ($)

messages are not authenticated!

Attack Phase 1
I Pick one Keyset ID in the first message and remove all others.
I Card uses either the listed key or the ShillKey⇒ check whether the terminal

responds with a third message.
I Repeat for all other keysets in the original set

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (34)

RSApk∗ ($)

messages are not authenticated!

Attack Phase 1
I Pick one Keyset ID in the first message and remove all others.
I Card uses either the listed key or the ShillKey⇒ check whether the terminal

responds with a third message.
I Repeat for all other keysets in the original set⇒ determine all supported

keysets in the original set.
June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (2, 34, 7)

messages are not authenticated!

Attack Phase 2
I Prepend the original set in the first message with a newKeyset ID.

I

I

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (2, 34, 7)

RSApk2 (2, DivData, RND1, RND1)

messages are not authenticated!

Attack Phase 2
I Prepend the original set in the first message with a newKeyset ID.
I If the new keyset is supported then the terminal will not be able to decrypt it

I

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (2, 34, 7)

RSApk2 (2, DivData, RND1, RND1)

messages are not authenticated!

Attack Phase 2
I Prepend the original set in the first message with a newKeyset ID.
I If the new keyset is supported then the terminal will not be able to decrypt it⇒

No third message.

I

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (2, 34, 7)

RSApk2 (2, DivData, RND1, RND1)

messages are not authenticated!

Attack Phase 2
I Prepend the original set in the first message with a newKeyset ID.
I If the new keyset is supported then the terminal will not be able to decrypt it⇒

No third message.
I Repeat for all keysets NOT in the original set

June 4th, 2015 | Jean Paul Degabriele | 11

A Keyset Fingerprinting Attack

IFDICC

index RSA AES

7 sk7 K7

34 sk34 K34

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

index RSA AES

2 pk2 K DD
2

7 pk7 K DD
7

∗ pk∗ K∗

KeySetID = (2, 34, 7)

RSApk2 (2, DivData, RND1, RND1)

messages are not authenticated!

Attack Phase 2
I Prepend the original set in the first message with a newKeyset ID.
I If the new keyset is supported then the terminal will not be able to decrypt it⇒

No third message.
I Repeat for all keysets NOT in the original set⇒ determine all supported

keysets.
June 4th, 2015 | Jean Paul Degabriele | 11

Tracing Cards

I In RSA even if the encryption key is kept secret, ciphertexts still leak a small
amount of information about the encryption key.

I Ciphertexts produced under different keys are distributed differently according
to the RSA modulus (e is usually fixed) .

I The RSA Shill Key is generated randomly during the card’s initialisation and is
essentially unique to that card.

I Moreover we can easily sample encryptions under the Shill Key by probing a
card with an empty set of Keyset IDs.

June 4th, 2015 | Jean Paul Degabriele | 12

Tracing Cards

I In RSA even if the encryption key is kept secret, ciphertexts still leak a small
amount of information about the encryption key.

I Ciphertexts produced under different keys are distributed differently according
to the RSA modulus (e is usually fixed) .

I The RSA Shill Key is generated randomly during the card’s initialisation and is
essentially unique to that card.

I Moreover we can easily sample encryptions under the Shill Key by probing a
card with an empty set of Keyset IDs.

June 4th, 2015 | Jean Paul Degabriele | 12

Estimating the RSA modulus

I It is reasonable to assume ciphertexts are uniformly distributed over [0, N − 1],
where N is the modulus.

I

June 4th, 2015 | Jean Paul Degabriele | 13

Estimating the RSA modulus

I It is reasonable to assume ciphertexts are uniformly distributed over [0, N − 1],
where N is the modulus.

I A naive estimate of the modulus would be to take twice the mean value of the
ciphertext samples.

June 4th, 2015 | Jean Paul Degabriele | 13

Estimating the RSA modulus

I It is reasonable to assume ciphertexts are uniformly distributed over [0, N − 1],
where N is the modulus.

I This turns out to be a well studied statistical problem known as the German
tank problem, due to its application in WWII to estimate the number of
German tanks.

June 4th, 2015 | Jean Paul Degabriele | 13

Estimating the RSA modulus

I It is reasonable to assume ciphertexts are uniformly distributed over [0, N − 1],
where N is the modulus.

I This turns out to be a well studied statistical problem known as the German
tank problem, due to its application in WWII to estimate the number of
German tanks.

M̃ = m +
m
k
− 1

I M̃ = Estimated maximum.
I m = Sampled maximum value.
I k = No of samples.

June 4th, 2015 | Jean Paul Degabriele | 13

ShillKey Fingerprinting – Scenario 1

AttackerICC1

KeySetID = (“ ”)

RSApk∗1
($)

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:

I for every card i receive k1 encryptions RSApk∗i
($)

I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

Attacker

PLAID system

ICC1

KeySetID = (“ ”)

RSApk∗1
($)

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:

I for every card i receive k1 encryptions RSApk∗i
($)

I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

AttackerICC1

KeySetID = (“ ”)

RSApk∗1
($)

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:

I for every card i receive k1 encryptions RSApk∗i
($)

I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

AttackerICC1

KeySetID = (“ ”)

RSApk∗1
($)

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)

I estimate Ni according to samples
I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

AttackerICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

AttackerICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

0 22047 22048

c c c cc cccc

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

AttackerICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

0 22047 22048

c c c cc cccc

“German Tank Estimate”
Ni = max C + max C

k1

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

AttackerICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

0 22047 22048

c c c cc cccc

N1

“German Tank Estimate”
Ni = max C + max C

k1

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

AttackerICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

Attacker

ICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

Attacker

ICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

Attacker

ICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

Attacker

ICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:
I receive k2 encryptions RSApk∗ ($)

I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

Attacker

ICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

0 22047 22048
N2N1 N3

c c c cc cc

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:
I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1

I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1

Attacker

ICC1

pk∗
1 = (N1, e1)

KeySetID = (“ ”)

1 ≤ RSApk∗1
($) < N1

N1

ICC2

pk∗
2 = (N2, e2)

KeySetID = (“ ”)

RSApk∗2
($)

N2

ICC3

pk∗
3 = (N3, e3)

KeySetID = (“ ”)

RSApk∗3
($)

N3

ICC?

pk∗ = (N∗, e∗)

KeySetID = (“ ”)

RSApk∗ ($)

?

0 22047 22048
N2N1 N3

c c c cc cc

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples

I Phase 2 – Challenge Phase:
I receive k2 encryptions RSApk∗ ($)
I estimate N∗ as in Phase 1
I guess card j with minj |N∗ − Nj |

June 4th, 2015 | Jean Paul Degabriele | 14

ShillKey Fingerprinting – Scenario 1 – Results

10 100 1,000 10,000

0.01 %

0.1 %

1 %

10 %

100 %

number of cards

su
cc

es
s

pr
ob

ab
ili

ty
(lo

g-
sc

al
e)

k1 = 100

10 100 1,000 10,000

0.01 %

0.1 %

1 %

10 %

100 %

number of cards

su
cc

es
s

pr
ob

ab
ili

ty
(lo

g-
sc

al
e)

k1 = 1000

k2 = 1000 k2 = 500 k2 = 100 k2 = 50 k2 = 10 baseline

June 4th, 2015 | Jean Paul Degabriele | 15

ShillKey Fingerprinting – Scenario 2

I In the previous scenario we had the ability to interact k1 times with each card,
which may not always be realistic.

I We now consider a setting where we are given a mixed set of ciphertexts,
without knowing which ciphertexts come from the same key.

I This scenario can arise for instance if the attacker manages to install a fake
terminal or to ‘skim’ a terminal.

June 4th, 2015 | Jean Paul Degabriele | 16

ShillKey Fingerprinting – Scenario 2

I In the previous scenario we had the ability to interact k1 times with each card,
which may not always be realistic.

I We now consider a setting where we are given a mixed set of ciphertexts,
without knowing which ciphertexts come from the same key.

I This scenario can arise for instance if the attacker manages to install a fake
terminal or to ‘skim’ a terminal.

June 4th, 2015 | Jean Paul Degabriele | 16

ShillKey Fingerprinting – Scenario 1

Let t = Number of cards in the system.

I Phase 1 – Identification Phase:
I for every card i receive k1 encryptions RSApk∗i

($)
I estimate Ni according to samples.

I Phase 2 – Challenge Phase:
I receive k2 encryptions RSApk∗ ($)
I estimate N∗ from the k2 samples.
I guess card j with minj |N∗ − Nj | .

June 4th, 2015 | Jean Paul Degabriele | 17

ShillKey Fingerprinting – Scenario 2

Let t = Number of cards in the system.

I Phase 1 – Identification Phase:
I receive k1 · t random samples RSApk∗ ($)
I estimate Ni according to samples.

I Phase 2 – Challenge Phase:
I receive k2 encryptions RSApk∗ ($)
I estimate N∗ from the k2 samples.
I guess card j with minj |N∗ − Nj | .

June 4th, 2015 | Jean Paul Degabriele | 17

ShillKey Fingerprinting – Scenario 2

Let t = Number of cards in the system.

I Phase 1 – Identification Phase:
I receive k1 · t random samples RSApk∗ ($)
I estimate Ni according to samples.

I Phase 2 – Challenge Phase:
I receive k2 encryptions RSApk∗ ($)
I estimate N∗ from the k2 samples.
I guess card j with minj |N∗ − Nj | .

June 4th, 2015 | Jean Paul Degabriele | 17

ShillKey Fingerprinting – Scenario 2

Let t = Number of cards in the system.

I Phase 1 – Identification Phase:
I receive k1 · t random samples RSApk∗ ($)
I estimate Ni according to samples.

I Phase 2 – Challenge Phase:
I receive k2 encryptions RSApk∗ ($)
I estimate N∗ from the k2 samples.
I guess card j with minj |N∗ − Nj | .

We use a heuristic clustering technique from machine learning to sort the ciphertext
samples, and then get an estimate from each cluster.

June 4th, 2015 | Jean Paul Degabriele | 17

ShillKey Fingerprinting – Scenario 2

AttackerICC?

pk∗
? = (N?, e?)

KeySetID = (“ ”)

RSApk∗?
($)

?

0 22047 22048

c cc c cc c c

0 N1 N2 N3 N4

N1 N2 N3 N4

I standard clustering technique based on k -means algorithm

June 4th, 2015 | Jean Paul Degabriele | 18

ShillKey Fingerprinting – Scenario 2

AttackerICC?

pk∗
? = (N?, e?)

KeySetID = (“ ”)

RSApk∗?
($)

?

0 22047 22048

c cc c cc c c

0 N1 N2 N3 N4

N1 N2 N3 N4

I standard clustering technique based on k -means algorithm

June 4th, 2015 | Jean Paul Degabriele | 18

ShillKey Fingerprinting – Scenario 2

AttackerICC?

pk∗
? = (N?, e?)

KeySetID = (“ ”)

RSApk∗?
($)

?

0 22047 22048

c c c c cc c cc c c

0 N1 N2 N3 N4

N1 N2 N3 N4

I standard clustering technique based on k -means algorithm

June 4th, 2015 | Jean Paul Degabriele | 18

ShillKey Fingerprinting – Scenario 2

AttackerICC?

pk∗
? = (N?, e?)

KeySetID = (“ ”)

RSApk∗?
($)

?

0 22047 22048

c cc c cc c c

0

N1 N2 N3 N4

N1 N2 N3 N4

I standard clustering technique based on k -means algorithm

June 4th, 2015 | Jean Paul Degabriele | 18

ShillKey Fingerprinting – Scenario 2

AttackerICC?

pk∗
? = (N?, e?)

KeySetID = (“ ”)

RSApk∗?
($)

?

0 22047 22048

c cc c cc c c

0

N1 N2 N3 N4

N1 N2 N3 N4

I standard clustering technique based on k -means algorithm

June 4th, 2015 | Jean Paul Degabriele | 18

ShillKey Fingerprinting – Scenario 2

AttackerICC?

pk∗
? = (N?, e?)

KeySetID = (“ ”)

RSApk∗?
($)

?

0 22047 22048

c cc c cc c c

0

N1 N2 N3 N4

N1 N2 N3 N4

I standard clustering technique based on k -means algorithm

June 4th, 2015 | Jean Paul Degabriele | 18

ShillKey Fingerprinting – Scenario 2

AttackerICC?

pk∗
? = (N?, e?)

KeySetID = (“ ”)

RSApk∗?
($)

?

0 22047 22048

c cc c cc c c

0

N1 N2 N3 N4

N1 N2 N3 N4

I standard clustering technique based on k -means algorithm

June 4th, 2015 | Jean Paul Degabriele | 18

ShillKey Fingerprinting – Scenario 2

AttackerICC?

pk∗
? = (N?, e?)

KeySetID = (“ ”)

RSApk∗?
($)

?

0 22047 22048

c cc c cc c c

0

N1 N2 N3 N4

N1 N2 N3 N4

I standard clustering technique based on k -means algorithm

June 4th, 2015 | Jean Paul Degabriele | 18

ShillKey Fingerprinting – Scenario 2

AttackerICC?

pk∗
? = (N?, e?)

KeySetID = (“ ”)

RSApk∗?
($)

?

0 22047 22048

c cc c cc c c

0

N1 N2 N3 N4

N1 N2 N3 N4

I standard clustering technique based on k -means algorithm

June 4th, 2015 | Jean Paul Degabriele | 18

ShillKey Fingerprinting – Scenario 2

AttackerICC?

pk∗
? = (N?, e?)

KeySetID = (“ ”)

RSApk∗?
($)

?

0 22047 22048

c cc c cc c c

0 N1 N2 N3 N4

N1 N2 N3 N4

I standard clustering technique based on k -means algorithm

June 4th, 2015 | Jean Paul Degabriele | 18

ShillKey Fingerprinting – Scenario 2 – Results

0 20 40 60 80 100

1 %

10 %

number of cards

su
cc

es
s

pr
ob

ab
ili

ty

k1 = 100

0 20 40 60 80 100

1 %

10 %

number of cards

su
cc

es
s

pr
ob

ab
ili

ty

k1 = 1000

k2 = 1000 k2 = 100 k2 = 10 baseline

June 4th, 2015 | Jean Paul Degabriele | 19

ShillKey Fingerprinting – Scenario 3

I We now further restrict the identification phase to only obtain k1 ciphertexts
from only one target card.

I In the challenge phase we will be given k2 ciphertexts coming either from the
target card or a randomly generated card. The goal is to distinguish the two.

I Note that while the challenge phase looks simpler, it is also the case that now
we have no information about the other cards to aid the challenge phase.

June 4th, 2015 | Jean Paul Degabriele | 20

ShillKey Fingerprinting – Scenario 3

I Phase 1 – Identification Phase:
I receive k1 encryptions RSApk∗t

($) from a target card.
I estimate Nt using the GTE.

I estimate the variance of Nt .

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($) from on one card.
I estimate N∗ using GTE.
I guess card is the target card iff |N∗ − Nt | < 3σ

June 4th, 2015 | Jean Paul Degabriele | 21

ShillKey Fingerprinting – Scenario 3

I Phase 1 – Identification Phase:
I receive k1 encryptions RSApk∗t

($) from a target card.
I estimate Nt using the GTE.
I estimate the variance of Nt .

I Phase 2 – Challenge Phase:

I receive k2 encryptions RSApk∗ ($) from on one card.
I estimate N∗ using GTE.
I guess card is the target card iff |N∗ − Nt | < 3σ

σ2 =
1
k
· (N − k)(N + 1)

k + 2

June 4th, 2015 | Jean Paul Degabriele | 21

ShillKey Fingerprinting – Scenario 3

I Phase 1 – Identification Phase:
I receive k1 encryptions RSApk∗t

($) from a target card.
I estimate Nt using the GTE.
I estimate the variance of Nt .

I Phase 2 – Challenge Phase:
I receive k2 encryptions RSApk∗ ($) from on one card.
I estimate N∗ using GTE.

I guess card is the target card iff |N∗ − Nt | < 3σ

σ2 =
1
k
· (N − k)(N + 1)

k + 2
k = min(k1, k2)

June 4th, 2015 | Jean Paul Degabriele | 21

ShillKey Fingerprinting – Scenario 3

I Phase 1 – Identification Phase:
I receive k1 encryptions RSApk∗t

($) from a target card.
I estimate Nt using the GTE.
I estimate the variance of Nt .

I Phase 2 – Challenge Phase:
I receive k2 encryptions RSApk∗ ($) from on one card.
I estimate N∗ using GTE.
I guess card is the target card iff |N∗ − Nt | < 3σ

σ2 =
1
k
· (N − k)(N + 1)

k + 2
k = min(k1, k2)

FRR = 2%
k = 100→ FAR = 5%,

k = 1000→ FAR = 0.5%

June 4th, 2015 | Jean Paul Degabriele | 21

ShillKey Fingerprinting – Scenario 1 – Results

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
50 %

60 %

70 %

80 %

90 %

100 %

number of identification-phase samples k2

su
cc

es
s

pr
ob

ab
ili

ty

k1 = 2000
k1 = 1000
k1 = 100
baseline

June 4th, 2015 | Jean Paul Degabriele | 22

June 4th, 2015 | Jean Paul Degabriele | 23

June 4th, 2015 | Jean Paul Degabriele | 23

Other Issues with PLAID

I Remember that at the end of a PLAID protocol run the card and the terminal
share a session key.

I No Forward security: a compromise of the long-term keys of either party,
immediately results in a compromise of past session keys.

I For RSA, PLAID uses PKCS#1 v1.5 instead of OAEP, which is widely known to
be vulnerabe to Bleichenbacher’s attack.

I While we didn’t see a direct way of exploiting it, the designers claim that
Bleichenbacher’s attack does not apply to PLAID simply because the RSA
moduli are not public!.

June 4th, 2015 | Jean Paul Degabriele | 24

Other Issues with PLAID

I Remember that at the end of a PLAID protocol run the card and the terminal
share a session key.

I No Forward security: a compromise of the long-term keys of either party,
immediately results in a compromise of past session keys.

I For RSA, PLAID uses PKCS#1 v1.5 instead of OAEP, which is widely known to
be vulnerabe to Bleichenbacher’s attack.

I While we didn’t see a direct way of exploiting it, the designers claim that
Bleichenbacher’s attack does not apply to PLAID simply because the RSA
moduli are not public!.

June 4th, 2015 | Jean Paul Degabriele | 24

Other Issues with PLAID

I Remember that at the end of a PLAID protocol run the card and the terminal
share a session key.

I No Forward security: a compromise of the long-term keys of either party,
immediately results in a compromise of past session keys.

I For RSA, PLAID uses PKCS#1 v1.5 instead of OAEP, which is widely known to
be vulnerabe to Bleichenbacher’s attack.

I While we didn’t see a direct way of exploiting it, the designers claim that
Bleichenbacher’s attack does not apply to PLAID simply because the RSA
moduli are not public!.

June 4th, 2015 | Jean Paul Degabriele | 24

Other Issues with PLAID

I For symmetric encryption PLAID uses AES in CBC mode with a fixed IV of
zeros.

I Thus encryption is deterministic and therefore not IND-CPA secure.

I The CBC padding is based on ISO/IEC 9797-1, but is incorrectly specified so
that it is not uniquely decodable.

I No authentication (MAC) is applied to CBC encryption.

I The list goes on....

June 4th, 2015 | Jean Paul Degabriele | 25

Other Issues with PLAID

I For symmetric encryption PLAID uses AES in CBC mode with a fixed IV of
zeros.

I Thus encryption is deterministic and therefore not IND-CPA secure.

I The CBC padding is based on ISO/IEC 9797-1, but is incorrectly specified so
that it is not uniquely decodable.

I No authentication (MAC) is applied to CBC encryption.

I The list goes on....

June 4th, 2015 | Jean Paul Degabriele | 25

Other Issues with PLAID

I For symmetric encryption PLAID uses AES in CBC mode with a fixed IV of
zeros.

I Thus encryption is deterministic and therefore not IND-CPA secure.

I The CBC padding is based on ISO/IEC 9797-1, but is incorrectly specified so
that it is not uniquely decodable.

I No authentication (MAC) is applied to CBC encryption.

I The list goes on....

June 4th, 2015 | Jean Paul Degabriele | 25

Other Issues with PLAID

I For symmetric encryption PLAID uses AES in CBC mode with a fixed IV of
zeros.

I Thus encryption is deterministic and therefore not IND-CPA secure.

I The CBC padding is based on ISO/IEC 9797-1, but is incorrectly specified so
that it is not uniquely decodable.

I No authentication (MAC) is applied to CBC encryption.

I The list goes on....

June 4th, 2015 | Jean Paul Degabriele | 25

Timeline

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014 2015

RWC

?!

June 4th, 2015 | Jean Paul Degabriele | 26

Timeline

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

2015

RWC

?!

June 4th, 2015 | Jean Paul Degabriele | 26

Timeline

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014

2015

RWC

?!

June 4th, 2015 | Jean Paul Degabriele | 26

Timeline

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014 2015

RWC

?!

June 4th, 2015 | Jean Paul Degabriele | 26

Timeline

2006

PLAID

2010

AS-5185-2010

“Fast Track”

ISO/IEC 25185-1

2014 2015

RWC

?!

June 4th, 2015 | Jean Paul Degabriele | 26

Thank you for your attention!

June 4th, 2015 | Jean Paul Degabriele | 27

	Introduction
	Description of PLAID
	Keyset Fingerprinting
	Tracing Cards
	General Security Concerns

